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Abstract—The idea behind collective perception is to improve
vehicles’ awareness about their surroundings. Every vehicle
shares information describing its perceived environment by
means of V2X communication. Similar to other information
shared using V2X communication, collective perception infor-
mation is potentially safety relevant, which means there is a
need to assess the reliability and quality of received information
before further processing. Transmitted information may have
been forged by attackers or contain inconsistencies e.g. caused
by malfunctions.

This paper introduces a novel approach for estimating a belief
that a pair of entities, e.g. two remote vehicles or the host
vehicle and a remote vehicle, within a Vehicular ad hoc Network
(VANET) are both trustworthy. The method updates the belief
based on the consistency of the data that both entities provide.
The evaluation shows that the proposed method is able to identify
forged information.

Index Terms—Collective perception, situational awareness,
sensor fusion, V2X communication, Bayes filter, misbehavior
detection, data consistency.

I. INTRODUCTION

Intelligent Transport Systems (ITS) aim at enabling safe,
efficient and coordinated transportation. Cooperative-ITS (C-
ITS) complements ITS with Vehicle-to-X (V2X) commu-
nication, short for Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication. V2X communication
can provide a variety of benefits for assisted and automated
driving, including enhanced environmental awareness beyond
the capabilities of traditional exteroceptive sensors. This is
achieved through periodic exchange of kinematic information,
i.e. vehicle position, speed, and heading, and can be even
further improved through collective perception. Collective per-
ception means that each partner shares information describing
its ego state, sensing capabilities and sensed/perceived envi-
ronment via V2X in so-called Collective Perception Messages
(CPMs). As a result, apart from capturing several hundred
meters of surroundings, sensing behind obstacles or curves is
enabled.

Exteroceptive on-board sensors provide high reliability and
the overall system is aware of its performance. The overall
system knows that specific sensors may perform inferior in
certain scenarios, e.g. camera performance is worse than radar
in rain, fog or darkness. Similarly, entities within the Vehicular
ad hoc Network (VANET) have different and changing per-
formance. Reduced performance might be caused by weather,
different equipment grades, malfunction, or a malicious entity

initiating cyber attacks. Applications relying on such erro-
neous information received via V2X communication would
be severely interfered. In particular, safety applications such
as adaptive cruise control, collision avoidance system, or
intersection assistant may endanger road users if they rely on
erroneous information. Thus, the detection of erroneous data
is indispensable.

There are basically two types of mechanisms to prevent
harm caused by erroneous data, cryptographic mechanisms
and misbehavior detection (and mitigation). Cryptographic
mechanisms, which in C-ITS are realized using pseudonym
certificates issued by public key infrastructures (PKIs), assure
that only authorized entities such as vehicles and infrastructure
devices can prove being a legitimate VANET participant. This
increases the effort for potential attackers, as they first have
to obtain valid credentials to appear as a legitimate network
participant. Nevertheless, authorized entities may exist that
transmit faulty information or exhibit malicious behavior.
For detecting this insider misbehavior detection mechanisms
are applied. Misbehavior detection assesses the behavior and
trustworthiness of entities, as well as the consistency and plau-
sibility of the information they transmit. Misbehavior detection
can be carried out by individual entities, or by multiple entities
in collaboration. While the collaborative approach has higher
potential for misbehavior detection, it disadvantageously relies
on a honest majority assumption.

In this paper, we present a novel approach for estimating
a belief that a pair of entities within a VANET are both
trustworthy. The underlying idea is to enhance the approach
we present in [1] through probabilistic modeling. We apply
the Bayes filter for probabilistic modeling, which updates the
belief based on the consistency of the data that both entities
provide.

The paper is structured as follows. The next section summa-
rizes related work, followed by a section that describes back-
ground regarding collective perception and feasible malicious
attacks. The approach for estimating the trustworthiness, i.e.
a belief that indicates if the exchanged data is trustworthy, is
described in Section IV. Finally, our approach is evaluated in
Section V, and Section VI concludes the paper.

II. RELATED WORK

The basic security concepts for VANETs have been in-
troduced for instance in [2], including the aforementioned
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Fig. 1: Architecture for Collective Perception.

cryptographic mechanisms and misbehavior detection. De-
tailed surveys on misbehavior detection in VANETs, including
position verification, are presented in e.g. [3]–[5].

Multiple mechanisms for position verification are proposed
in [6]. They include checking whether the sending entity is
located within the maximum communication range, or whether
it pretends to move at impossible speed. The mechanisms
also include checks taking into account that only a limited
number of vehicles can be located within an area, map-
based verification for identifying unlikely positions, e.g. off
the streets, or in houses, and position claim overhearing.
These position verification mechanisms are complemented by
cooperative approaches in [7], exchanging neighbor tables or
reactive position verification upon demand.

In [8] and [9], the claimed position is compared to a
corresponding vehicle tracker, which estimates the predicted
position based on previously received information utilizing a
Kalman filter.

Data from different types of information sources such as
messages, radar sensor and map data are aggregated to evaluate
the trustworthiness of neighboring vehicles in [10]. A Particle
filter is applied, which increases or decreases the particle
weights depending on the consistency of the claimed position.

In [11], multi-object tracking is proposed to verify the
consistency of positions in messages by means of already
available existence estimates.

To the best of our knowledge, there has been no work
using probabilistic modeling for estimating a trustworthiness
in collective perception in VANETs.

III. BACKGROUND

This section provides background information concerning
the assumed basic system architecture for collective percep-
tion, how to use collective perception for position verification,
and the attacker assumptions.

A. Architecture for Collective Perception
The basic architecture is shown in Figure 1. The main

components are the local fusion module, the communication
module, and the global fusion module.
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Fig. 2: Simplified Cooperative Awareness Message (CAM).
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Fig. 3: Simplified Collective Perception Message (CPM).

The local fusion module fuses measurements from the
exteroceptive on-board sensors. The environmental awareness
of a vehicle is typically gathered by exteroceptive on-board
sensors such as radar, camera or lidar sensors. The sensor
observations are fused within the local fusion module by
means of multi-object tracking (MOT) [12] and multi-sensor
fusion algorithms [13], [14]. The local fusion module provides
as output a list of tracked objects. A unique object id is
assigned to each object. In addition to the dynamic state,
the existence probability, classification and vehicle extent are
estimated. The dynamic state typically includes Cartesian
position, velocity and heading information.

The communication module is responsible for disseminating
messages over the VANET, e.g. Cooperative Awareness Mes-
sages (CAMs) and CPMs. V2X communication can partially
be considered as an additional sensor that provides redundancy
and an increased perception range, enabling the perception
of occluded objects. Messages are exchanged periodically via
wireless communication, either using IEEE802.11p [15], or
using LTE-V2X. For exchanging information various message
formats have already been standardized. The CAM [16] in
Europe and the Basic Safety Message (BSM) [17] in the US
enable the exchange of information that describes the ego state
of the remote vehicle. Standardization for collective perception
has recently been started at the European Telecommunications
Standard Institute (ETSI) [18], [19]. The basic content of
the CAM is shown in Figure 2 and the content for CPM
in Figure 3. Both message types contain information that
describe the Ego Information State (EIS) of the remote vehicle.
The CPM contains additional information describing the Field
of Views (FOVs) of the exteroceptive sensors the remote
vehicle is equipped with and the perceived dynamic objects
(PDOs) by the remote vehicle. The EIS provides a unique
remote vehicle ID, the type c, dimensions d and dynamic
state

[
φ λ h ψ v a ψ̇

]T
of the remote vehicle. The

dynamic remote vehicle state is described by the latitude φ,
longitude λ, altitude h, yaw angle ψ, velocity v, acceleration
a and yaw rate ψ̇. The provided time stamp t is valid for the
total message. The FOV for each sensor might be given by
the sensor position x, y, range rmin, rmax and opening angle
αmin, αmax. Each PDO is identifiable by a unique object ID
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Fig. 4: Example 1: Positive Verification of Third Party Position
Claim (Concept 1).

per remote vehicle. Next to the dynamic state
[
x y g v

]T
,

the type c, dimension d and existence p (∃) estimate might be
transmitted. CAMs are typically transmitted with a frequency
between 1 to 10Hz conditional on the scenario. CPMs are
envisioned to be transmitted at similar but generally lower
frequencies.

The global fusion module merges the received commu-
nication data with the local fusion output resulting in an
enhanced environmental awareness. Firstly, the received data
must be aligned in time and space [20]. We suggest that the
next step is to inspect for misbehavior in order to assign a
trustworthiness to the received data. Subsequently, the data is
associated. In [21] a comparison is made between the nearest
neighbor, modified auction, and suboptimal joint probabilistic
data association. Finally, the data is fused. For the dynamic
state, track-to-track fusion methods such as covariance inter-
section [22] or information matrix fusion [23] are appropriate.
For merging existence probabilities, in [24] an appropriate
method for track-to-track fusion is proposed.

B. Collective Perception for Position Verification

Beyond improving environmental awareness, information
obtained through collective perception can be used to verify
position claims in VANETs. Our previous work [1] presents
two concepts for position verification in VANETs that make
use of collective perception.

The first concept uses information from CPMs to verify
position claims of third party vehicles, e.g. a vehicle C uses
CPMs from a vehicle B to verify position claims of a vehicle
A. If, as shown in the example in Figure 4, B’s sensors cover
A’s claimed location, and if B’s CPMs contain the same
position, then C can use this as a positive confirmation of
A’s position (assuming that C trusts B).

The second concept uses CPMs to verify position claims of
the CPM sending vehicle, e.g. a vehicle C uses CPMs from
a vehicle A to verify vehicle A‘s position claims. The second
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Fig. 5: Example 2: Positive Verification of CPM Sender
Position (Concept 2).

concept relies on C having the possibility to determine what
A should include in its CPMs if A is at its claimed location.
A corresponding example is shown in Figure 5. C is aware of
B’s location through C’s exteroceptive on-board sensors and
B’s CAMs. C also knows that A should include B in A’s
CPMs as B is within A’s sensing area. If A does accordingly,
this is a positive verifications af A’s position.

C. Attacker Model

In this work, we assume that the attacker is an insider, i.e.
he has valid key material and he is capable of signing his
messages with valid signatures to appear like for instance a
normal vehicle. The attacker is forging the message content.
There are various conceivable forgery possibilities, e.g. mod-
ifying the ego state or of one or several PDOs. Modification
of a single state variable as well as multiple state variables is
conceivable. Depending on the intention, the attacker might
fake for instance an acceleration or turning maneuver, or
position information. Alternatively, adding a ”ghost” PDO,
though also omission of PDOs is realistic. However, the
capabilities of the attacker are limited to the assumption acting
non-cooperatively.

IV. TRUSTWORTHINESS ESTIMATION

This section presents our novel approach for estimating
the belief that a pair of entities within a VANET are both
trustworthy. The basic idea is to estimate the trustworthiness
by assessing data consistency taking into account likelihoods,
i.e. to quantify the confidence in the correctness of the data.

Firstly, we explain why we estimate the probability that a
pair of entities are trustworthy. Data consistency assessment
requires that at least two redundant data sets are available,
which are checked against each other.

A straightforward approach would be to assess data consis-
tency for each entity against the truth. However, the truth is
unknown. Accordingly, a reference is mandatory. One option



may be to utilize the global awareness of the host vehicle
as reference. This requires ensuring the prevention of infiltra-
tion of forged or erroneous data into the global awareness.
Otherwise, the attacker might for instance forge an object
located in an area that has been unobservable by other entities
so far. Thus, with no inconsistency being detectable, the
forged object will be assumed to be existent and the attacker
will be classified as trustworthy. Additionally, a trustworthy
entity might consequently be classified untrustworthy due to
inconsistency.

That is why we chose to assess the incoming data sets
directly amongst each other. However, multiple data sets
complicate the source identification of inconsistencies. Con-
sequently, trustworthiness is estimated in each case for two
entities, i.e. two remote vehicles or the host vehicle and a
remote vehicle. The concept is that each pair of entities is
assigned a belief representing that both entities are trustworthy.
The belief is expected to increase or decrease depending on
the consistency of the environmental awareness of entity 1
compared to entity 2. In Section IV-A our novel approach
for estimating trustworthiness probability is described. For
estimating the trustworthiness probability, we propose to apply
the well-known Bayes theorem. Section IV-B discusses applied
parameters, the detection probability and the not forged object
parameter.

A. Bayes Filter
Initially, we define the problem of trustworthiness estima-

tion. In trustworthiness estimation the state consists of just a
single, binary hypothesis, i.e. either entity 1 and entity 2 are
both trustworthy (T e1∧e2) or at least one of both is untrust-
worthy

(
�T e1∨e2

)
. For short notation the abbreviations (T )

and
(
�T
)

are introduced. This problem is analogous to the one
we have in object existence estimation [25]. The probability
that both entities are trustworthy at time k conditioned on
all information about the tracks lists of both entities up to
time k is denoted p

(
T e1∧e2
k |T k

e1 , T
k
e2

)
. The information about

both track lists is hereafter abbreviated by T k. The probability
that at least one of both is untrustworthy is given by the
complement.

In order to solve the problem of trustworthiness estimation
we propose to apply a Bayes filter, which recursively estimates
the object state, i.e. the probability whether both entities are
trustworthy or not, for each time step k. The state might
change over time, which is modeled by the system model that
predicts the state from the previous time k − 1 to the current
time k, which is described in Section IV-A1. Generally, there
is an observable, which is related to the state according to an
observation model. Section IV-A2 describes the update step
that incorporates the observable, which is the result of the
data consistency assessment.

1) Prediction: The prior trustworthiness probability is pre-
dicted using the state transition probabilities pcT and pc̄�Taccording to:

p
(
Tk|T k−1

)
= pcT p

(
Tk−1|T k−1

)
+ pc̄�T

p
(
�T k−1|T k−1

)
,
(1)

p
(
�T k|T k−1

)
=

[1− pcT ] p
(
Tk−1|T k−1

)
+ [1− pc̄T̄ ] p

(
�T k−1|T k−1

), (2)

where pcT is the probability that both entities continue to be
trustworthy. The parameter pc̄�T

models the probability that
one or both entities does not continue to be untrustworthy, i.e.
both entities are trustworthy at time k, but at the previous
time k − 1 at least one of both was untrustworthy. The
parameter pcT is chosen slightly smaller 1 to model the
assumption that both trustworthy entities likely continue to
be trustworthy, but with the probability 1 − pcT at least one
changes into an untrustworthy entity. The parameter pc̄�T

is
chosen slightly greater than 0 to model the assumption that
with a small chance all untrustworthy entities might become
trustworthy, but likely the untrustworthy entity will continue
to be untrustworthy.

2) Update: The trustworthiness is updated through check-
ing consistency between the tracks lists Te1 and Te2 of entity
1 and entity 2, respectively. In section IV-A2a and IV-A2b
probabilities for the different observable events are modeled.
In Section IV-A2c we suggest determining a compound event
probability to reduce computational effort, before finally the
trustworthiness is updated using the compound probability,
which is the result of the consistency check. It is to be noted
that each list includes the perceived object tracks as well as
the ego track. Accordingly, CAMs might also be used for
assessing the consistency.

a) Association: The probability that a track tj is avail-
able in the tracks list of entity 1 that corresponds to a track
ti in the tracks list of entity 2 conditioned on that entity 1
and entity 2 are trustworthy is p

(
tj ∈ Te1 ∼ ti ∈ Te2 |T

e1∧e2
k

)
and hereafter abbreviated by p (t|Tk). It depends on the object
existence probability and the detection probability that the
object is detectable by the sensors of entity 1:

p (t|Tk) = pde1
(ti) p∃e2

(ti) . (3)

As discussed before, a reference is needed, for which entity
2 is used. Hence, the estimation of entity 2 is used for the
probability of existence.

The probability that the track tj is available in the tracks
list of entity 1 that corresponds to a track ti in the tracks list
of entity 2 conditioned on that at least one of the entities is
untrustworthy is p

(
tj ∈ Te1 ∼ ti ∈ Te2 |�T

e1∨e2
k

)
and hereafter

abbreviated by p
(
t|�T k

)
. The object is expected to be present

with the aforementioned likelihood lowered by the parameter
p̄f that estimates the portion of not forged objects. However,
the object is at least present with a clutter probability pc that
models the likelihood of a forged object being accidentally
assignable to a true object:

p
(
t|�T k

)
=

{
pc, p̄fpde1

(ti) p∃e2
(ti) < pc

p̄fpde1
(ti) p∃e2

(ti) , else
(4)



The clutter probability pc is modeled as a constant slightly
greater than 0.

b) No Association: The probability that no track tj is
available in the tracks list of entity 1 that is assignable to a
track ti in the tracks list of entity 2 conditioned on that entity 1
and entity 2 are trustworthy is p

(
tj /∈ Te1 ∼ ti ∈ Te2 |T

e1∧e2
k

)
and hereafter abbreviated by p (t̄|Tk). It is the complement of
(3):

p (t̄|Tk) = 1− p (t|Tk) . (5)

Accordingly, the probability that no track tj is available in
the tracks list of entity 1 that is assignable to a track ti in
the tracks list of entity 2 conditioned on that at least one of
the entities is untrustworthy is p

(
tj /∈ Te1 ∼ ti ∈ Te2 |�T

e1∨e2
k

)
and hereafter abbreviated by p

(
t̄|�T k

)
. It is the complement

of (4):
p
(
t̄|�T k

)
= 1− p

(
t|�T k

)
. (6)

c) Combining the Observable: Assuming that the indi-
vidual events whether a track is available or not are condi-
tionally independently distributed, the compound probability
of the compound event conditioned on whether both entities
are trustworthy or not can be determined as follows:

p (E|Tk) =
N∏

n=0

pn (t|Tk)
M∏

m=0

pm (t̄|Tk) , (7)

p
(
E|�T k

)
=

N∏
n=0

pn
(
t|�T k

) M∏
m=0

pm
(
t̄|�T k

)
. (8)

The number N states that N tracks have been assigned
between tracks list Te1 and Te2 and vice versa. Accordingly,
there are M tracks that have not been associated.

The probabilities that both entities are trustworthy and its
complement that at least one entity is untrustworthy are finally
updated according to:

p
(
T |T k

)
= ηp (E|Tk) p

(
T |T k−1

)
, (9)

p
(
�T |T k

)
= ηp

(
E|�T k

)
p
(
�T |T k−1

)
, (10)

where the posterior trustworthiness with information from the
tracks lists of entity 1 and entity 2 up to time k is denoted by
the probability that both entities are trustworthy p

(
T |T k

)
and

the probability that at least one is untrustworthy p
(
�T |T k

)
. The

prior trustworthiness with information from the tracks lists of
entity 1 and entity 2 up to time k−1 is denoted by p

(
T |T k−1

)
and p

(
�T |T k−1

)
, respectively. The measurement information

derived from the tracks lists at time k is given by p (E|Tk)
and p

(
E|��Tk

)
. The normalizing factor η is defined as:

η =
1

p (E|Tk) p (T |T k−1) + p
(
E|�T k

)
p
(
�T |T k−1

) . (11)

B. Modeling the Parameters

The previously described method employs several param-
eters. While most parameters have already been sufficiently
described, this section provides a more detailed description of
the detection probability pd and the parameter that estimates
the portion of not forged objects p̄f .

pd
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Fig. 6: Detection probabilities for an entity located at x = y =
0 that is equipped with forward facing sensors.

1) Detection Probability: The detection probability pd rep-
resents the probability whether or not an entity is capable of
providing valid information about an object. It is modeled
using the FOVs of the sensors and obstacle occlusions, as
described in [26] for the persistence probability. A joint FOV
or more specifically a visibility polygon is specified based on
the FOVs of the sensors and the surrounding obstacles. The
FOV of each sensor is restricted by its minimum and maximum
range and angle. The detection probability drops near the
limits of the FOV, as described in [27]. The surrounding
obstacles comprise only of confirmed tracked objects as well
as static objects from map data. Based on the extent of the
obstacles, the obscured area is modeled, in which the detection
probability converges to 0 for line-of-sight sensors. If the
entity is equipped with sensors that are able to detect occluded
objects such as radar, a more sophisticated model is required.
Figure 6 shows an exemplary visibility polygon including the
detection probabilities for an entity located at x = y = 0 that
is equipped with forward facing sensors. Whether the object
is inside or outside the visibility polygon is checked by ray
casting [28]. Depending on the distance to the closest border of
the visibility polygon, the detection probability is additionally
reduced to take into account likely missed detections near the
obscured areas. Besides, the visibility polygon is supplemented
by one’s own awareness.

2) Not Forged Object Parameter: The parameter p̄f , which
estimates the portion of not forged objects, is determined
based on the detection probability and whether there exists
an assignable track. The number of times the probability that
entity 1 is able to detect track ti exceeds a threshold t is
counted for all objects in the tracks list of entity 2. Addition-
ally, we count how often no track from entity 1 is assignable
to a track from the tracks list of entity 2 conditioned on that
entity 1 should be able to detect track ti. The probability p̄f
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is finally calculated by the following relation:

p̄f =

∀pd>t∑
i

ti ∈ Te2 −
∀tj /∈Te1

∼ti∈Te2
|pd>t∑

i

ti ∈ Te2

∀pd>t∑
i

ti ∈ Te2

. (12)

In case the second term in the numerator or the denominator
is zero, p̄f is set to constant smaller one and greater zero.

V. EVALUATION

Within the scope of the evaluation the trustworthiness
estimation method described in Section IV is evaluated. The
evaluation is based on simulation [29] that provides mobil-
ity data and sensor measurements. The simulation scenario
includes five vehicles which are exchanging CPMs, i.e. four
remote vehicles denoted hereafter as entity 1 to 4 and one
host vehicle denoted hereafter as entity 5. All entities are
crossing the same intersection. Entity 4 follows entity 1 driving
northwards. Entity 2, 3 and 5 drive westwards, eastwards and
southwards, respectively.

For the purpose of assessing the proposed method, five
attacks are emulated, which are outlined in Figure 7. Posi-
tions and FOVs of the host vehicle as well as of remote
vehicles that are currently transmitting CPMs are displayed
in the host vehicle body frame. The sub-figures are arranged
chronologically so that the movement of vehicles is deducible.
During 16s < t < 17s entity 2 attacks the VANET by
transmitting forged heading information about entity 3. Si-
multaneously, entity 3 is itself transmitting CPMs that include
ego state information, which is why the host vehicle receives
conflicting information. However, it is not possible to deduce
which entity is executing the attack. The subsequent attack
at 19.5s < t < 20.5s involves once again forging information
about entity 3 by entity 2, though position data this time. Since
there is correct information from entity 1 and 4 in addition to
from entity 3 describing entity 3, the contradiction should be
retraceable to attacker entity 2. During 21.5s < t < 22.5s

forged velocity information about entity 1 is transmitted by
entity 2. The host vehicle receives further information from
entity 1 and 4 describing entity 1. The subsequent two attacks
at 28s < t < 29s and 32s < t < 35s involve the transmission
of forged position data about entity 5. Inititally, entity 1 is
executing the attack, which is not detectable due to absence
of redundancy. The fifth attack is performed by entity 4, while
entity 1 provides contradictory, though correct information. It
is to be noted that during evaluation data provided by the host
vehicle is ignored.

In Figure 8 the result of the trustworthiness estimation is
shown for any pair of the four remote vehicles. It shows the
estimated probability that both entities are trustworthy. The
attacks are indicated by A1 ... A5. Initially, the probability
that entity 2 and 3 are trustworthy increases and converges
to 1. The probability that entity 2 and 4 as well as 3 and 4
are trustworthy increases slightly and keeps constant, since
their FOVs are partly overlapping but without a common
object. During the first security attack the probability that
entity 2 and 3 are trustworthy converges to 0. Once an object
enters the FOV of both entities, its probability increases or
slightly decreases depending on the promptness that the object
is confirmed. The amount of decrease highly depends on
the detection probability model. During the second and third
security attack, the probability that entity 1 and 2 as well
as entity 2 and 4 are trustworthy converge to 0. The same
applies for entity 2 and 3 for the second security attack. Once,
no object is present inside an entity’s FOV, its corresponding
trustworthiness probability converges to 0.5. As expected, the
fourth security attack is not detected, while the fifth security
attack results in that the probability of entity 1 and 4 being
trustworthy converges to 0.

VI. CONCLUSIONS

Security in VANETs remains challenging, even after more
than a decade of R&D in the domain. Through research,
numerous concepts have been developed that increase security,
be it by introducing (pseudonym-)certificates to make if diffi-



cult for attackers to appear as legitimate network participant,
or by developing approaches for misbehavior detection /
trustworthiness estimation.

In this paper, we present a novel approach for quantifying
the confidence in the correctness of data that is transmitted
within VANETs for the purpose of collective perception.
The underlying idea is to assess consistency of the received
data in order to recursively estimate the trustworthiness of
transmitting entities. We utilize Bayes theory for recursive es-
timation and we provide observation models. The observation
model expresses the relation between the result of the data
consistency assessment and the trustworthiness state.

The stimulative investigation of our approach shows that it
is appropriate for trustworthiness estimation. Contradictions
between received data caused by an attack result in low
trustworthiness belief. Furthermore, the approach allows the
attacker to be identified if at least triple redundancy exists for
the contradiction.

Opportunities for future work include real-world testing,
particularly to examine the detection probability model. Also
of interest is the investigation of an approach that combines
the result of multiple misbehavior detection methods using re-
cursive estimation in order to obtain a common trustworthiness
belief. We further think that the result of the trustworthiness
estimation might be applied to improve the robustness of the
global fusion.
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